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20. ABSTRACT

ARMTRAK is a micro-world, based on the control of model trains, designed to integrate work in
natural language, planning, vision and robotics. The primary advantage of the domain is that it
provides examples that involve only few objects but that require sophisticated analysis. Because
the examples involve few objects, the complex reasoning required is not intractable. On the other
hand, more objects can be introduced to study techniques for tractable reasoning. Simple and
complex examples in the same domain allow work at different levels to take place simultaneously.
As a planning domain, ARMTRAK allows exercising planners in a real-time domain about which
the planner has only imperfect knowledge. As a domain for natural language research, it allows
research into the grounding of language in real situations, and the problem of coordinating the
behavior of agents through language. As a domain for active vision research, it is challenging
because it requires extracting information whose parameters cannot be completely specified
beforehand. Two implementations of ARMTRAK have been developed: a simulation and a version
using the Rochester Robot. The simulation allows work on real-time planning, and a robot version
shows the feasibility of a real working sy. iem based on model trains.
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- ARMTRAK is a micro-world, based on the control of model trains.
designed to integrate work in natural language, planning, vision and
robotics. The primary advantage of the domain is it provides ex-
amples that involve only few objects but that require sophisticated
analysis. Because the examples involve few objects, the complex rea-
soning required is not intractable. On the other hand, more objects
can be introduced to study techniques for tractable reasoning. Sim-
ple and complex examples in the same domain allow work at different
levels to take place simultaneouslv. As a planning domain, ARM-
TRAK allows exercising planne; . .. a real time domain about which
the planner has only imperfect « ~-.odge. As a domain for natural
language research, it allows researc.. into the grounding of language
in real situations, and the problem of coordinating the behavior of
agents through language. As a domain for active vision research, it is
challenging because it requires extracting information whose parame-
ters cannot be completely specified beforehand. Two implementations
of ARMTRAK have been developed: a simulation and a version us-
ing the Rochester Robot. The simulation allows work on real time
planning, and a robot version shows the feasibility of a real working
system based on model trains. /.
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1 Introduction

ARMTRAK is a micro-world to support a long-term research effort in inte-
grating planning, natural language, vision and robotics under development
at the University of Rochester. It is based on the control and monitoring of a
model train set capturing the conceptual simplicity of blocks-world domains
while extending it enough to exercise intelligent systems on more realistic
problems. ARMTRAK consists of a sensorium that provides information
about the current state of the world, and a set of commands that change
the state of this world (see Figure 1). Both sensation and action are sub-
ject to failure, and costs are associated with gathering information or acting.
Moreover, the information available through the sensorium is limited.

A computer simulation of this micro-world has been implemented, and
we are currently building a version that will use the Rochester Robot [14]
as the sensorium. This new “real” version of ARMTRAK will consist of the
train set, a controller providing the interface between the computer and the
train set, video cameras with appropriate supporting hardware and software
for the vision capabilities. and a terminal acting as the natural language
interface to a person.

ARMTRAK allows the testing of models of real-time plan-directed con-
trol, multi-agent planning, reasoning about simultaneous action, plan exe-
cution monitoring and debugging, complex visual processing such as object
recognition, tracking moving objects, general reasoning about causality to
predict future events (both undesirable ones such as trains de-railing or col-
liding and desirable one such as discovering an available car near where it is
needed), and complex real-time dialogues involving the negotiation, discus-
sion and formulation of plans, and cooperative man-machine plan execution.

Though it was initially proposed as a planning domain, implementation
of ARMTRAK using the Rochester Robot and a set of model trains offers
challenges for research in natural language. Because the domain can be
restricted to a few objects, strategies for natural language understanding
and generation can be investigated without encoding all human knowledge.
At the same time, more complex interactions are possible because activity
taking place may have unexpected consequences for both the system and the
person communicating with it, and because the system may have goals and
desires of its own.

While simple ARMTRAK configurations can be used to support initial
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Figure 2: Sussman Anomaly in ARMTRAK

research, it can be easily extended to provide much more complex problems
of perception and reasoning. A simple ARMTRAK domain, for instance,
might include a circular track with several spurs, a single engine, two or
three train cars, automatic switches and a train-car decoupler. With this
setup, all the traditional blocks-world problems can be represented as train-
car arrangement problems. The Sussman anomaly, as it would be represented
in ARMTRAK, is shown in Figure 2.

To solve even such simple problems in ARMTRAK, however, the system
needs to be able to perceive the position of the cars, monitor the engine
as it picks up cars and drops them off at the right piace, and use real-
time “reactive” control mechanisms to control the engine. From here, the
domain can become even more complex: the track may be extended requiring
significant route planning; the number of cars may be increased to complicate
perception and reasoning; more than one engine may be used to introduce
problems of simultaneous action; a person may be introduced to interact
with the system to negotiate goals; formulate plans and cooperatively aid in
execution; a wall may be placed hiding part of the track so that the system
cannot directly perceive the complete world; and so on.

It should be stressed that these are all domain-independent problems
that arise whenever real-time control or man-machine dialogue is necessary.




ARMTRARK is used as a testbed for demonstrating the effectiveness of the
particular theories. ARMTRAK is not a goal in itself and domain-specific
solutions will not be used, except possibly in areas that are not the focus of
the research.

Three planning issues arise in ARMTRAK. These are: dealing with time,
dealing with uncertainty, and choosing appropriate goals. These issues will
arise whenever autonomous agents deal with realistic problems. Consider, for
example. the problem of scheduling ambulances. Time is crucial both because
the patient must arrive at the hospital as soon as possible and because events
occurring during the generation and the execution of plans are ordered by
time. Events such as traffic and stop lights cannot be known in advance, so
the information the planner deals with is uncertain. Goals must continually
be weighed to make rational choices, say between risking an accident by
driving too fast or risking the health of the patient by driving too slow.
Similar problems will be faced by exploratory robots. The Mars lander will
have a limited arnount of time for exploration and should make the most
of it. Moreover, it will be in an unknown and uncertain environment. It
wili also need to choose between performing the activities requested by its
operators on Farth, and dealing with contingencies of which, due to the time
lag in communication, only it is aware. Even simple warehouse robots face
these problems. They must retrieve items as quickly as possible and must
optimize their routes to do so. A large warehouse with a changing inventory
will make it impossible to keep the robot’s knowledge completely consistent
with the contents of the warehouse. Such robots also need to prioritize among
requests from multiple sources.

In this technical report we explore the three main problem areas to be
investigated using ARMTRAK: planning, natural language and active vi-
sion. The report is divided into six sections. The next section provides an
overview of the ARMTRAK system and an extended example that will be
used throughout to suggest experiments than can be performed in ARM-
TRAK. The third, fourth and fifth sections discuss issues the ARMTRAK
domain raises for planning, natural language and active vision respectively.
The last section describes the state of ARMTRAK as of this writing.




Name Arguments
Set Switch | Switch No. New State
Set Power | Loc. No. Power Inc.
Uncouple | Track No.
ARMTRAK commands
Name Arguments | Returns
Get _Switch | Switch No. | State
Get Speed | Train No. | Speed
Get _Locate | Train No. | Location

ARMTRAK queries

Figure 3: ARMTRAK queries and commands

2 ARMTRAK

2.1

The train set being used in the Robot implementation of ARMTRAK is an
ordinary HO gauge model train set. Intuitions about operating such trains
can therefore be freely applied to the ARMTRAK domain. A more formal
description of the domain follows.

ARMTRAK consists of model train layout coupled with a sensorium. A
set of commands manipulates the layout; the sensorium satisfies a set of
queries. The lavout consists of track and trains. The track comes curved or
straight sections. The curved sections are categorized by the radius of the
circle that the track describes. Switches are sections of track that bifurcate
into two branches one curved and one straight. The state of the switch
determines which of the two alternatives is taken. Decouplers are sections
of track that can uncouple cars. To uncouple cars the engine pushes the
coupled cars onto the decoupler, the decoupler is activated, and the train
moves forward. Cars on the decoupler will not reconnect as long as the
decoupler is active. The track is a sequence of track sections. Trains are
composed of a locomotive and cars. Signals sent to the locomotive specify
the power supplied to the engine. The velocity of the train is determined

Technical Description
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Figure 4: Example layvout

by the power supplied to it, its weight, and the grade of the track it is on.
When a car backs into another car the cars connect or couple. Commands
can be sent to the switches, the trains and the decouplers. Commands to
the switches change the state of the switch; commands to the engines change
the engine’s power; commands to the decouplers activate or deactivate the
decoupler.

The architecture of the ARMTRAK planning domain is shown in figure 1.
The planner sends commands to ARMTRAK that change the state of the
world and receives perceptions back in response to queries. The commands
and queries are shown in figure 3.

2.2 Example

To make the discussion of ARMTRARK as a testbed for intelligent planning
and natural language processing more concrete, consider the following sce-
nario. The system can control the trains, the switches on the tracks, and




System’s Goal Leave cattle car 37 at station B

Person’s Goals 1. Move a load of potatoes from the loading bin at Sta-
tion A to the market and maintain the engine.

Initial State e Engine has cattle car 37 attached.
e Box car 43 is on Spur #3.
e Cattle car 24 is at Station A.

e There are potatoes in the loading bin near Station A.

Figure 5: Example goals of person and system and initial situation

other devices such as the decoupler. It can also perceive most of the world
at any time. Certain parts of the layout may, however. be visible only to
the person. Furthermore, certain actions in the domain, say, loading cars,
can only be done by the person. As one can see, this presents an excellent
opportunity for plans that necessarily involve the person and the machine,
and allows plans that cannot be executed without significant communication
occurring between the man and the machine. A drawing on the layout on
which the example is based appears in Figure 4.

There are two agents involved in this scenario: a person, P, and the
system, S. Initially, the system’s goal is to move the cattle car attached
to the engine to Station B. The person’s primary goals are to move some
potatoes from Station A to the market near station B and to have then
engine maintained. In addition, the person has a secondary goal of getting
cattle car 24 to Station B.

The system’s relation to the person is like that of an employee to a boss.
The system may have goals of its own, and may choose to delay satisfying the
person’s goals in order to satisfy its own first. Still, in general, the person’s
goals are given higher priority than its own.!

'Thanks to David Traum for pointing out the importance of the issue of social rela-
tionship in a multi-agent domain.
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3 Planning

Traditional planning has concentrated on issues of correctness and perfor-
mance in controlled environments. Planning of this type has been well-served
by the blocks world. This planning domain does not, however, address sev-
eral new problems raised by attempts to build robots that plan actions in
the real world. Whil- planning domains must be simple enough for humans
to reason about, they must also be complex enough to exercise planning pro-
grams. Though the blocks world admirably captures the first requirement,
it fails on the second. The blocks world makes five simplifying assumptions
that affect the planners that operate in it. These assumptions are:

[y

. only the planner has effects on the world,

3

. the planner’s actions always cause expected effects,

3. only one action can occur at one time,

4. a goal must be completely achieved for a plan to succeed and
5. complete information is always available.

Due to these simplifying assumptions, the blocks world fails to support suf-
ficient complexity to exercise planning under three major categories of con-
straints:

1. real-time planning,
2. planning in an uncertain world, and
3. choosing among multiple, possibly contradictory, goals.

ARMTRAK will have advantages over the blocks world due to increased
flexibility along four axes. First, time in ARMTRAK is more like time in the
common sense world. This increased realism allows experiments involving
planners that maintain complex temporal models and planners that reason
about the temporal resources they are using. Next, complex goals can be
specified allowing the use of planners that attempt to achieve optimal results
rather than blindly achieving set goals. Also, the domain will have a enough
elements so that realistic conversations can be generated about the domain
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allowing the use of a discourse system involving plan recognition. Finally,
unexpected results can occur, allowing the use of planners designed to take
advantage of serendipity, and forcing the issue of mistakes and uncertain
actions into the open.

3.1 Planning in the Example

For intuitions about how the issues mentioned above arise in ARMTRAK,
consider the following steps in the generation of a plan for the scenario de-
scribed above. Currently no planner can generate and execute such a com-
plicated plan. ARMTRAK will, however, provide a unified domain for the
entire planning community at the University of Rochester. By working to-
gether, we hope to be able to produces such plans in the near future.

1. While the system, S, is planning to move the car attached to the engine
to Station B, the person, P, notifies it that she wants it to take the
potatoes in a loading bin as station A to market by 4:00, and that she
wants it to take the engine to the machine shop at Station A.

2. S reorganizes the priority of its goals, giving the person’s goal of getting
the potatoes to market the highest priority, its goal of getting the cattle
car to Station B second highest priority, and the person’s goal of getting
the engine to the station for maintenance the lowest priority.

3. S starts generating a plan to get the potatoes to market. It recognizes
that it will need to get to Station A first, so it plans a route and starts
the trains moving.

4. S notifies P that it will have to move the trains at a dangerous rate of
speed to make the deadline.

5. S then realizes that it knows of no way to load potatoes. It stops
planning temporarily to ask P how to load potatoes.

6. P tells S how to load potatoes. This plan requires that S move a box
car at Spur #3 to the loading bin and leave it there while P loads the
potatoes.

7. S does not know what a box car is so it asks P.

12




8. P tells S that there is a box car on Spur #3.
9. S looks at Spur #3 to see what a box car is.

10. S begins planning again while beginning to move the train towards
Spur #3.

11. P asks why S is pulling a cattle car, and S describes its goals.

12. P asks S to satisfy its secondary goal of getting the cattle car at Station
A to Station B also.

13. S adds this new goal with a priority just above its own goal.

14. S sets the switch to move onto Spur #3, but the switch fails, and the
train continues on the oval.

15. S recognizes the mistake.
16. S backs the train over the switch and sets it again.

17. S asks P to watch the switch while it passes to make sure that the
switch does not fail again.

3.2 Real Time Planning

There are two aspects of real time planning: the temporal structure of the
plans produced, and producing those plans in a timely fashion. The first of
these aspects is a constraint on the plans produced; the second is a constraint
on the planner.

Plans rely heavily on the structure temporal constraints give them. Even
plans involving only a sequence of primitive actions require this sequential
temporal ordering for structure. More complex interactions arise when con-
current or conditional plans are produced, or the when the planner must
interact with scheduled events (as does Deviser [36]). For instance, in the
above example, the system must recognize that it cannot move the cattle
cars when the train is in the shop. It must therefore raise the priority of its
goal over the last of the person’s goals to achieve its goal at all.

ARMTRAK also has situations that can only be handled by multiple
actions occurring simultaneously. Such a scenario appears in the example

13




planning session (line 6) when the person tells the system that it must wait
at the loading bin while she loads the potatoes. It is crucial that the system
be able to reason about the duration of the wait at the loading bin. The
system must be able to generate a plan that includes a wait of a particular
time. Because it would be impossible to represent waiting actions of all
different lengths. the system must be able to reason about length of time
and durations of states.

In addition to the structure time imposes on plans, time imposes serious
constraints on the planner. First, the planner must be able to produce an
adequate plan when a plan is needed. In a dynamic domain, the changing
world make plans that are produced too late useless. Second, the planner
must be able to react to changing situations and abandon or alter plans that
become outdated.

Plans are relevant only in that they are timely. Agents must consider
the chance that planning may, by taking too much time, produce useless
plans. Thus planners must be able to reason both about the time required
to execute the plan and the time required to generate the plan. Brooks
[10] argues that planning using world models is too costly to be performed
in a timely manner. In a similar vein, Agre and Chapman [1] argue for
using the world as a representation of itself. Planning can then be made
less costly by considering only those things that are currently perceivable.
Limiting reasoning to a few items is important because planning, Chapman
[15] claims, is NP-hard. Clearly, however, humans use their world knowledge
to reason about plans. These facts must be accounted for in planners that
act in the real world.

In the example planning session, the person specifies a temporal con-
straint to the planner. It must get the potatoes to the market by 4:00. This
requires that the system reason not only about the travel time between the
train’s current position, the loading bin, and the market, but it must also
reason about the amount of time it will take to generate a plan to achieve
the goal. The result of this reasoning might be the decision to start moving
the trains before a complete plan is generated as our hypothetical planner,
S, does in line 10.

The system cannot relinquish control of the trains when it needs to rea-
son, so ARMTRAK requires that the system have a continuously operating
control component. Timely reaction to circumstances requires intelligent
control of the trains while the planner is reasoning. Because different sub-
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systems control reasoning and acting, a trade-off occurs. The planner may
exercise precise control by producing detailed plans, or it may rely on pre-
compiled control routines. In commonly occurring situations, precise control
is problematic because reasoning is costly. On the other hand, relying on
precompiled routines may be catastrophic in inappropriate situations. These
two types of control appear in human behavior as smooth, learned motor
skills and jerky, sensory-feedback, cognition-driven activity.

In order to meet its time constraint in the example planning session, the
system must start moving the trains as soon as it realizes that the train will
have to be at the loading bin before it gets to the market. Thus, in line 3,
the planner starts moving the trains towards the loading bin. This turns out
to be a mistake, however, because it needs to pick up a box car on Spur #3
before it gets to the loading dock. It will need to rely on other routines to
deal with monitoring the train while pursuing the further planning that leads
it to this recognition.

When the system’s plans change, or are newly defined, the activity of
the control component may need to be suspended or modified. The reasoner
must reason in two ways. First, it must continually revise its estimate of the
value of the plan it is carrying out. Second, it must be able to deal with goals
that arise while planning, not due to the elaboration of the plan, but due to
perceiving a new situation. Thus the reasoner must continually be both de-
ciding what activity it should pursue next, and the reasoning about its goals.
Georgeff and Lansky([19] describe a planner that can react to new situations
by halting and altering plans given new information. Firby (18], tries to build
plans that react to new situations in a timely fashion by specifying a plan-
ning that consists of a many loosely-coupled simple routines. ARMTRAK
provides a testbed for all of these theories of planning and activity.

The first type of revision of plans occurs in line 12. The system has orga-
nized its goals, has begun planning, and has even initiated activity towards
the realization of its goals. It must now, however, reconsider its plans in the
light of the person’s new request. It should recognize that though the new
request conflicts but little with its own plans, it conflicts in a major way with
the goals of getting the engine serviced. It must therefore attempt to satisfy
this new goals before getting the engine serviced. It must therefore reduce
the priority of getting maintenance on the engine even further.

The second type of revision occurs when the system recognizes that it has
passed the point where it should have moved onto Spur #3 (in line 15). It

15




must be able to revise the plan in light of the situation in which it finds itself.
According to the system’s plan, the engine should be on Spur #3 ready to
connect to the box car, but it is really still on the oval loop. It must alter its
plan so that it will back up and try to move onto Spur #3 again, but it would
be wasteful to throw away the entire plan. To change its plan with maximum
efficiency, the system must recognize the part of the plan that fails, remove
that part, and insert corrective action at that point.

3.3 Planning with Uncertainty

ARMTRAK requires agents that adapt to both anticipated and unantici-
pated situations. Any solution in the ARMTRAK domain must be able to
adapt across the spectrum of appropriate responses. At one erd of this spec-
trum are responses that must be made to avoid immediate disaster or to take
advantage of the current situation, at the other end are responses that re-
quire much deliberation. The system takes advantage of the current situation
in line 3 by starting the train. It knows enough to begin to move towards
the satisfaction of its goals, and knows that simple reasoning processes are
sufficient to keep the train moving in the right direction. Such a recognition,
however, requires complex reasoning about possible futures. ARMTRAK
situations will require combining the ability to address stereotyped problems
by simple rote procedures with the ability to reason about novel problems.

The perceptual processes of the system must be well understood to be
able to determine when replanning is needed. In particular, three types of
information must be analyzed to determine when replanning is necessary:
the cost of perception must be taken into account; the accuracy of the per-
ception received must be considered; and the cost and probability of success
given replanning in contrast to the cost and probability of success given no
replanning.

This type of reasoning will be necessary for the system to realize that
it needs to ask the person to monitor the progress of the train through the
switch (line 17). The system will need to recognize that its own abilities
have limited effectiveness in this situation in order to recognize that it needs
to ask for help. It must balance the cost of asking the person to help it
against the cost of failing to connect to the box car, and it must balance the
probability that it can monitor the switch effectively against the probability
that the person will help it.

16




In addition to dealing with unexpected situations, the system should be
constantly monitoring the world in order to refine its knowledge. Because the
system'’s ability to gather information is limited, it must take full advantage
of what information it does gather. It should continually gather and process
that information that is readily available in order to make future planning
easier. Three types of incomplete information appear in the example planning
session: incomplete knowledge of the current situation; incomplete knowledge
of a plan to achieve its goals; and incomplete knowledge of the structure of
the world.

The first type of incompleteness appears in line 17 when the system asks
the person to monitor the trains for it. The system need merely rely on the
person to notify it if the switch fails. This type of information can be treated
as simple perception, it does not need complex reasoning to make sense of
the information it gets.

The second type of incompleteness occurs when the system realizes that
it does not know how to load potatoes in line 5. It can gather the necessary
information by asking the person how to perform the task, but the problem
has different ramifications. The system must realize that there is a technique
for performing such an action, and must be able to incorporate information
about how to perform the action. The system must be able, not only to in-
corporate new information, but to alter its model of the world to incorporate
new information about how the world changes in response to its actions.

The third type of incompleteness shows up when the system asks the
person what a box car is in line 7-8. Due to the difficulty of describing visual
scenes, the person tells the system only where it can find a box car. The
system must then process this information, infer that a box car is a type of
railroad car, look on Spur #3, and combine the visual information it gathers
with information it has about other types of railroad cars. If there is only one
car on Spur #3, the task is somewhat simplified. The system can assume
that the car on Spur #3 is a box car, and the features can be compared
against the features that distinguish other types of cars. This information
should be stored for future reference. If there is more than one car on the
track, the problem is more complicated. The system must also determine
which of the cars on the track is a box car. Probably the best solution to
this problem is to ask which is the box car.

Feldman and Sproull [17, 33] discuss choosing between different possible
plans by using decision theory. Such choices are possible only if there is
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a way in which utility can be associated with goals, and costs associated
with actions required to achieve these goals. Utilities and costs cannot be
associated with the goals and actions of the blocks world in a natural way.
By extending intuitions about real trains to the model trains world, such an
association can be achieved naturally. For a simple example, costs could be
the length of the track traversed; utilities the cargo held in the cars.

3.4 Choosing among Multiple Goals

The blocks world allows the encoding of multiple goals that must be achieved
simultaneously, but it is hard to see a simple way to choose among various
goals if they cannot be satisfied simultaneously,. ARMTRAK is different.
Theie are certain implicit goals like “keep the train on the track” that should
always be maintained. On the other hand there are those goals the system
is given like getting the potatoes to market by 4:00 in line 1. In the example
planning session, the goals interfere with each other. If the system runs the
train fast enough to get the potatoes to market by the deadline, it is likely
that the train will derail, so the system must prioritize among these goals.
Should it run the train hard and risk a derailing, or should it simply fail
to meet the deadline? Actually, the deadline probably is a continuum of
goals; missing the deadline by a little is probably less serious than missing
the deadline by a lot. How should the system prioritize keeping the train on
the tracks in this continuum of goals?

The example planning session presented above also involves multi-agent
planning. In this example, two agents are involved, the system and the
person. The second agent further complicates the problem of prioritizing
among goals. The system must be able to prioritize its own goals among those
of the person communicating with it. Prioritizing goals brings up the problem
of the social relationship between the system and the person. In the example
above, the system occupies an employee/boss relationship with the person,
but other relationships are possible, and would lead to different types of
problem solving. Competition is another common social relationship between
artificial agents and people. If the system and the person were competing to
move their trains around a partially shared track, the negotiation between
them would have a different character.

In the example scenario, the two agents are cooperating to achieve mutual
goals. In line 5, when the system asks the person how to get the potatoes to
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market, multi-agent planning is occurring. Part of the system’s plan requires
gathering information from the other agent, so the systems plan is contingent
on activity by the person. If the person does not answer the goal cannot be
achieved; asking the person is a necessary part of achieving the goal of taking
a load of potatoes to the market.

The problem of prioritizing goals involves two different types of reasoning.
The system must be able to choose between goals that it will achieve, and
it must be able to choose among the means of achieving the goals. Deciding
which goals to achieve will involve determining which goals are contradictory.
Deciding the means to achieving the goals will involve calculating the relative
merits and costs of achieving the goals. The merit of the goal, should include
the chance that the goal may fail due to unexpected circumstances.

The problem of choosing among goals arises immediatelyv in the example.
The first thing the system does after receiving instructions from the person
in line 1 is organize the priority of its goals. (Line 2) Its own goal of moving
the cattle car to Station B will be impossible if it achieves all the person’s
goals before it achieves any of its own, so it must not simply accomplish the
person’s goals before attempting to achieve its own.

In order to choose goals appropriately, the system will need a model of
the person’s goals. The system should be able to recognize that the person’s
goals probably involve keeping the train on the track. The system could rea-
son that if the train jumped the track, the persou’s goals cannot be achieved,
but several reasoning steps can be saved by recognizing through simple cal-
culations that excessive speed will be necessary. As it does in lire 4, the
system can then notify the person of the necessity for excessive speed before
the situation becomes even more critical.

The problem of choosing among the means to achieving a goal arises in
line 17. The system is unable to monitor train movement through the switch,
so it asks the person to do it. The system could simply continue to run the
train through the switch until the switch worked correctly. It could determine
that the switch has indeed worked when the train did not reappear on the
oval where it could see it. This solution is much more costly than asking the
person to watch the switch, however, and the system should be able to reason
that, since the goals it is pursuing are those of the person, the person should
be invested in achieving them in a timely fashion. Thus, there is benefit in
asking for help.
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3.5 Current Research

At present, research into all the issues mentioned above is ongoing at Roch-
ester. Much of this work is structures around Allen’s two level architecture
for planning [3, 5]. This architecture involves a reactive control system and
a complex plan reasoner whose communication is limited. A plan reasoning
system is being developed using the timelogic system [27] which allows one
to write programs that reason about such constraints. Timelogic can be
accessed through Rhetorical (7], a first order logic knowledge representation
system. One of the crucial aspects of this project is dealing with action
abstraction. Tennenberg [34] has developed a formal model of abstraction
in STRIPS-type domains and is currently extending this work to non-linear
and temporal planning frameworks.

Weber [37] has built a system that uses heuristics to find the most ap-
propriate information using a parallel algorithm for calculating expectations.
This system provides a first cut at the problem of relevance. Hartman [22] is
studying the problem taking into account the cost of planning while planning.

Reasoning under uncertainty is of primary concern at Rochester. Ky-
burg’s epistemological probabilities {24, 25] provide one of the primary can-
didates for representing uncertain information. Tennenberg and Weber have
used this system to provide a solution to the frame problem [35]. Loui [28]
has built a reasoner that uses epistemological probabilities and has developed
decisions theory for this system. In addition, Feist is studying the problem
of planning to monitor plans that might fail due to uncertainty.

The problem of choosing which among a group of goals to solve is less well
studied. Pelavin and Allen [31] provide groundwork for the solution of this
problem by suggesting a formalism that allows one to reason about actions
that are the result of activity other than the reasoning agent’s. Kautz’s
(26] work in plan recognition provides the foundation for giving a system the
ability to infer plans from language. This ability is important for multi-agent
planning.

4 Natural Language

SHRDLU (38] used the blocks world as a domain for natural language, and
the capabilities this system were suited to the constraints imposed by the
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domain. The domains in which subsequent natural language systems are
tested have, for the most part, made similar simplifying assumptions. These
assumptions are similar to those made in planning domains. They are:

1. only the system has effects on the domain of discourse,

2. the only means of communication is through the console,

3. the system and the person have the same goals, and

4. the system has access to complete information about the domain.

ARMTRARK is a useful domain for examining some aspects of commu-
nication. For example, plan recognition {2, 26] is frequently used in natural
language understanding systems to resolve semantic ambiguities. The need
for plan recognition arises only under circumstances that are complex enough
to require disambiguation.

When it is implemented on the Rochester Robot, however, ARMTRAK
becomes a much more interesting domain. The crucial difference between
such an implementation and other domains for experimentation in natural
language systems is interaction with the real world. Such interaction allows
experimentation in natural language in three areas.

1. Activity takes place during the conversation,
2. the system may have onlv partial knowledge of the world, and

3. both the system and the human interlocutor use language to achieve
their respective goals.

Interaction with the real world makes ARMTRAK a particularly rich do-
main for investigating man-machine communication using natural language.
On the other hand, the ability to reduce the domain to few predicates and
constants makes incremental experimentation possible. The minimal system,
described above, consisting of one, two or three cars, a single engine, and a
circular track with three spurs is rich enough to engender the example con-
versation presented in the next section. Though the conversation is complex,
the number of items actually referred to is small, reducing the problem of
real time inference. The problem of real time inference can also be addressed
in ARMTRAK by increasing the number of cars in the system. Problems
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introduced by complex world knowledge can be investigated by associating
different characteristics with the cars. For example, in the following conver-
sation, the system asks what kind of cars are good for carrying potatoes. To
pose such a question, the system must have concepts of railroad cars and
potatoes. Ever more complexity can be introduced into the model by adding
ever moie complex information about trains and their behavior.

4.1 A Dialogue about the Example

The following constructed dialogue gives a flavor of the rich conversations
possible in this domain and is provided to aid the reader’s intuition. Specific
problems that arise in this proposal will be discussed following the example.
The situation in which the dialogue occurs is the same as the situation
in which the planning session occurs. That is, the person, P, and the ARM-
TRAK system. S both have initial goals that are not mutually known. The
person’s goal is to get a load of potatoes from the loading bin at station
X to the market near station B and, once this is done, to have the engine
maintained. The system’s goal is to get the cattle car 37 that is attached to
the engine to station B. This situation is summarized in figures 4 and 5.

1. P: I'd like you to take a load of potatoes to the market by 4:00.
2. They are in the loading bin at station A

3. When you're done, you should return to the engine shop for mainte-
nance.

4. <Trains start to move>

5. S: I'm going to have to move the trains too fast. They might derail.
6. P: Don’t worry.

7. S: 've never loaded potatoes before.

8. How do I do that?

9. P: I'll operate the loader at station A.

bl

10. You back the car into the loading bin
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11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22
23.
24.

26.
27.

28.

29.
30.

31

open the car doors, and

leave it for about 20 minutes.

S: What type of car is best for potatoes?

P: Any car but a tanker or a cattle car will work, but a box car is best.
S: What's a box car?

P: There's one on spur #3.

S: OK.

I'll pick up the box car on spur #3.

P: By the way,

You're pulling a cattle car already.

S: I know

I need to drop it off at station B.

I'm going to do that after I drop the potatoes off.

OK?

. P: Oh.

In that case.

while you're at station A. can you pick up another cattle car that also
needs to go to station B?

<The switch to Spur #3 is set incorrectly and the train moves past the
turn off>

S: Oops, I missed the turn off.
<The trains moves back across the switch to try again.>

S: Is the switch set correctly?




32. P: Yes, the switch is OK.

33. You're about to cross it now.

34. <PAUSE>

35. You're past it.

36. S: Thanks. I'm stopping the engine now.

37. I can get your other cattle car with no problem.
38. I'm backing up.

39. Can you let me know when 1 hit the box car?
40. P: OK.

41. OK. You've got it.

42. There’s nothing else attached to it, so you're ready to go.

Natural Language is used for many distinct purposes in the dialogue. In
particular, it is used as a form of generalized perception, it is used for coop-
erative problem solving, and it is used to monitoring the plan’s execution. In
addition, it signals the status of the conversation explicitly as the dialogue
progresses to insure effective and efficient communication. Finally, it is used
to resolve and express uncertainty. The following sections discuss each in
turn.

4.2 Talking about Plans and Goals

Language may be used as a generalized form of perception in the sense that
it is used to acquire knowledge about the external world much in the way
the vision system is used. Both involve observations and inference. The
vision system provides certain primitive functions, and the system uses this
information to infer the state of the world. Similarly, the language system
provides an analysis of the structure of the incoming sentence, and the system
uses this information to infer the state of the world again (via the recognized
intentions of the speaker). Consider two examples. Say the system has
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a goal to find a red train-car. It might plan to scan the track with the
cameras until something red is seen, and then attempt to identify this as a
car. Alternatively, it might ask the person if she knows where a red car is, and
use this information to form a plan directly, or to reduce the search needed
by the camera. As another example, consider the system as it attempts to
move an engine up to a car. Again, it might use the vision system, or it
might ask the person to tell it when it is touching (as in lines 39-41 above).
If the car is in an area that is out of the system’s range of sight, then only
the latter might be a viable plan.

Language is also used as part of the problem solving process, either so
that the two agents may agree on a joint plan, or so that one may assist the
other in formulating a plan. For example, in lines 9 -12 above, the person
suggests a joint plan, where it operates the loader, and the system moves the
car in and waits. As another case, if the system has a goal of getting a load
of grain to a certain location, the person might advise it to avoid a route
involving a bad track. When the two agents have individual goals of their
own, deciding on a plan becomes a negotiation as well. For example, lines
21- 29 involve a reformulation of the plan so that the goals of both the man
and machine can be accomplished within the same plan. Language may also
be used to monitor the execution of the plan, and to suggest quick solutions
to expected events that occur. An example of this was given above wher. the
person notified the system when the engine was near a certain car. Other
examples are reports of unexpected circumstances (the switch ahead is set
wrong), suggested solutions (trying slowing down and activating the switch
again), and as an aid to real-time plan recognition. For example, sentence
19 is generated in response to recognizing an act that is not part of the plan
that the person expected. This leads to the clarification of each agent's goals
and a revised plan.

The system will need a model of both its own knowledge and its human
interlocutor’s knowledge. In sentences 8-9 the robot asks how to load pota-
toes. Because it cannot do it for itself, it chooses to use language to achieve
its goals. It also needs a model of the human’s abilities to recognize that the
human will be able to monitor the switch for it in sentence 31.
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4.3 Modeling the Communication Process

Because activity is ongoing during the dialogue, the amount of time taken
to convey information is important. To increase the efficiency of commu-
nication the system will need to perform tasks like parsing, lexical lookup,
and reasoning in parallel. In addition, the system will need to be able to
reason about the plans and goals of the person to optimize its use of words.
Reasoning about the person’s intentions allows it to use a phrase as a marker
as it does in line 17.

Another type of efficiency occurs in sentence 16, when the robot suc-
cessfully resolves a “one” anaphora referring to an object mentioned in the
previous sentence. Because there is two way interaction between the robot
and the human, such references will be common.

Interactions at the discourse level also insure that the person and the sys-
tem communicate efficiently. In particular, there are specific utterances that
function solely to maintain the discourse interaction. For example, there are
three instances of the utterance “OK” in the dialogue, which show different
uses as described by Grosz [20]: Utterance 17 signals that S understood and
believed P’s answer to a question. Similarly, utterance 40 signals that P has
agreed to S’s request, and 41 signals that a certain stage has been reached in
the plan being executed. In other cases, acknowledgment occurs implicitly:
For example, utterance 24, “OK?” is a request for an acknowledgment. Even
though P’s response 25-27 doesn’t explicitly acknowledge as requested, it
implicitly acknowledges the situation since P did not object to it. The plan-
ning model of the discourse interaction to provide a precise account of this
type of behavior as well as the problem solving behavior mentioned above.
Grosz and Sidner [21] examine aspects of discourse that appear not to be a
direct result of planning behavior, and such a model should eventually be
incorporated with the results of this work.

In addition to discourse markers, there are several indirect speech acts
in the dialogue. In particular, we see requests that are made by utterances
such as:

e “I'd like you to ...” (1)
e “You should return ...” (3)

e “Can you let me know when ...” (39)
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Each of these sentences could be interpreted in a literal manner in some
settings, but appear to be effortlessly identified in their indirect readings in
this dialogue. Plan-based models have been used to handle this problem for
over a decade now [6], although these models were not sensitive to different
subtleties of phrasing. Hinkelman and Allen [23] proposed a model that
allows constraints from both the form of the utterance, and constraints from
plan-based reasoning about the context, to be combined to form an efficient
and general model of speech act interpretation.

4.4 Conversation given Partial Knowledge

Because the world about which the person and the system are talking is
larger than either is able to deal with completely, the system must be able
to model its own and the person’s abilities. The ability to model the per-
son’s ability will give the system the ability to determine when it is able to
glean information about the world from the person. The ability to gather
information from the human requires a flexible parsing strategv and lexicon.

Parts of the dialogue involve several levels of clarification subdialogues.
Utterances 7-8, for instance, show that S has understood the request but
doesn’t have the knowledge required to perform the act (namely, loading
potatoes). After P gives instructions 9-12 to clarify the initial request, S
asks for yet further clarification 13. Utterance 14 provides this additional
clarification and 17 signals that the initial request 1 has been understood
and the goal accepted. Of course, 17 could have been said only to acknowl-
edge that P now knows what cars are best to carry potatoes, or it could be to
acknowledge that P now knows how to do the task, but has not yet accepted
it. It is only from the continuation, 18, that the appropriate interpretation
can be identified. Again, the planning model should provide a detailed ac-
count of why these interpretations are all possible interpretations, and how
the correct one is identified.

Because conversations in the ARMTRAK domain are not limited by a
world model to which the natural language subsystem has access, the system
needs to be able to extend its lexicon. At sentence 15 the robot notifies the
human that “box car” is a word that is not in the lexicon. The human gives
the robot information about the cattle car in sentence 16. The robot must
add this information to the lexicon. To allow inserting new words into the
lexicon, the parser must guess the features of words not in the lexicon. Much
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information is encoded in the position of words in the sentence in English, and
this information should be available to the lexicon when it is inserting words.
To do this, the parser will have to be able to return partial information. The
features of this word should be garnered from the context. The robot knows
that the new phrase is a noun because it has a definite article attached to it.
Moreover, it should realize that the new phrase refers to some sort of railroad
car by analogy with tank car and box car. This ability will require complex
interaction between the parser, the lexicon, and the reasoning system.

Using ARMTRAK as a domain for investigating issues in natural lan-
guage processing allows serious investigation into issues of semantic interpre-
tation. Because the robot has access to the real world, issues of the meaning
of words can be investigated experimentally. Issues such as the relative mer-
its of Montegue logic and situation semantics [16] can be investigated in a
domain where words actually refer to objects that exist outside the realm of
discourse.

Semantic interpretation will need to be able to connect words with sen-
sations. For example, when the human says “box cars” to the system, the
system will need to be able to distinguish those objects in novel situations.
The connection between words and sensations is made even more problematic
by the uncertainty inherent in sensation. All information gathered from the
real world is contingent and uncertain. Natural language, on the other hand,
seems to be less so. Some means of deriving beliefs that can be reported in
natural language must be developed.

The system will also need to be able to report probabilities. In sentence 5
the system reports probability by saying “There’s a good the chance train
will derail.” The system will have the ability to compute the exact level
of its belief that the train will derail, but it must be able to translate this
number into a phrase the human will understand. Such a translation is not
straightforward. There are probably no simple thresholds determining the
probability values that correspond to words used to hedge statements.

The system also needs a model of the capabilities of the trains so that
it can report that there is a danger of the trains derailing in sentence 5.
Moreover, the decision to make this report requires the system recognize
that the sequence of actions necessary to rerail the trains is complicated and
that the human may wish to change the current goals to avoid this disaster.
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4.5 Current Research

Much of the work in natural language grows out of the Discourse System
Project [4]. The software developed by this project consists of six modules
communicating through a blackboard. These modules are: a lexical module,
a syntactic module, a semantic module, a reference module, a speech acts
module, and a tense and aspect module. The lexical module accepts and
identifies words. Its analysis returns the input word, the suffix information,
and the root dictionary entry. The syntactic module is not yet implemented,
but its task will be to parse input sentences. Poesio is currently working on
a parser that may provide the necessary functionality. The semantic module
transforms the syntactic information produced by the syntactic module into a
logical form. This transformation generates information that is implicit in the
words used from information gathered from the dictionary and information
gathered from the word position. The reference module associates world
knowledge with the logical forms produced. To do this it interprets the
conceptual content of expressions and associates them with the objects to
which they refer. The speech act module uses Allen and Hinkelman’s [23]
technique for interpreting speech acts. The temporal module analyzes the
temporal information inherent in the discourse.

The Discourse System Project used the tasks faced by a reference librarian
as its domain. It quickly ran afoul of the vast amount of knowledge necessary
to deal with requests for information from the library. ARMTRAK is a
domain in which conversations as complex as those of the project could take
place. This domain does not, however, require an inordinate amount of world

knowledge. Almost all the software developed for the discourse project can
be used in the ARMTRAK domain.

5 Active Vision

In the past, much work in vision and robotics has concentrated on isolated
problems, which, it was hoped would provide general solutions which could
then be combined in a flexible system. Constraints imposed by real problems
made much of this work difficult to apply in practice. Like the blocks world
in planning, these isolated problems have generated many useful results, but,
because of their isolation, they have also lead to neglect of some important
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aspects of sensing and acting. Some of the simplifications that arise from
isolated study of vision and robotics are:

1. the task being studied need not coordinate its activity with other tasks,
2. the task can be arranged so that extraneous problems disappear,

3. temporal constrains can be ignored,

4. the task is never impossible, and

5. everything necessary for the task is always available.

Building ARMTRAK will provide a testbed for work in vision and robotics.
Because ARMTRAK must satisfy a wide range of tasks, the usual simplifying
assumptions cannot be made. As a testbed for active vision, ARMTRAK
will allows experimentation in:

1. sensing and control under temporal constraints,
2. sensing and control under sub-optimal circumstances, and
3. choosing sensing and control tasks appropriate to overarching goals.

Because the trains move regardless of the robot, the designers control
and sensing routines are faced with real time constraints. For example, it is
not sufficient to merely perceive an impending collision, the collision must
be recognized before it occurs.

In the real] world, agents are faced with situations in which their percep-
tions or actions are somewhat degraded. A person, for example, can recog-
nize and manipulate objects even when the objects are partially obscured
and the person is wearing gloves. ARMTRAK provides the ability to per-
form experiments in similar situations. Parts of the track may be obscured,
or inaccessible to the robots control. Many experiments in robotics involve
mobile robots. These robots have the advantage of moving through the real
world, and therefore actually encounter the problems faced by people. ARM-
TRAK takes a different attack. Instead of allowing the robot to range freely
in the real world, the real world is shrunk so that the mobility the robot
does have is sufficient. This allows experiments to proceed incrementally.
Initially strong simplifying assumptions can be made allowing initial testing

30




of primitive routines. As more realism is introduced into the layout, these
initial assumptions can be relaxed.

People have many methods of effecting and sensing the world. Given a
particular goal, a person chooses among the means that cause the desired
effect for the one most appropriate to the circumstances. The choice of
an appropriate technique for achieving a goals involves weighing the cost of
applying that technique, the cost of failure, the probability that the technique
will succeed, and the benefit that will result from success. Much work in
vision and robotics does not address this problem because either only one
technique is being studied, or the goals are fixed before hand. Because the
robot’s goals will be driven by the planner, fixing the goals at the start is
not feasible. Similarly, because the robot will face a wide variety of tasks, it
is unlikely that a single technique will suffice for all.

5.1 Examples of Sensing and Control

Rochester’s binocular robot head is one of a new generation of active vision
svstems being developed arcund the world. It mounted on a six degree of
freedom arm. The two cameras are on a common tilt platform, and have
independent pan axes. The arm can position the camera anywhere over the
floor within a working radius of approximately 8 feet. The hardware is ca-
pable of motions comparable to primate performance (about 1 m/sec head
translational velocity with less than 1 mm. positioning accuracy, 200 deg/sec
head rotation, and 300 degrees/sec camera rotations with .14 degree position-
ing accuracy). The camera controllers are capable of supporting full-speed
gaze-shifts to random directions at a rate of 5/s. The aperture, focal length,
and focus of the cameras are not vet computer controllable. The video out-
put is processed by a Datacube MaxVideo pipeline-paraliel image processing
system that can do many low and intermediate-level vision operations at
30Hz (video frame rate). The host computer for the system is currently
a Sun/3 computer but will soon be a 24-node Butterfly Parallel Processor
(BPP). Each node of the BPP is an M68020 processor with M68881 floating
point coprocessor and 4MB of memory. A fast communications switch allows
the processors to share memory or pass messages efficiently. An additional
a real-time operating system will control the dextrous hand and perhaps
other peripherals over the VME bus. LISP planning programs communicate
with robot applications code over the ethernet. Fig. 6 shows the hardware
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Figure 6: Architecture of the hand - eye system as of mid-1990. As of
late 1989 the central host is a Sun (though the Butterfly is running some
applications), and the hand is still in the acquisition phase.
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organization we plan to attain by mid-1990.

From this hardware, a sensorium will be built so the robot head is po-
sitioned by the Puma robot. Visual information from the cameras will be
sent to the MaxVideo for initial processing, then to the Butterfly for more
sophisticated processing. The results of the more sophisticated processing
will, in turn, be used to guide the positioning of the Puma.

As an example of the type of processing required of the system consider
the problem the robot will face when it discovers that it does not know what
a box car is, and that there is and example of a box car on Spur #3.

1. The system glances over at Spur #3 to see if it cah distinguish a type
of railroad car that it does not recognize

2. It cannot find such a car, so it moves the head over so it can get a
better view of Spur #3.

3. As the head moves, it monitors its view, and stops moving as soon as
it sees a car whose type it doesn’t recognize.

4. The system determines how the box car should be indexed among
known railroad cars types.

5.2 Temporally Constrained Sensing and Control

For the tasks faced by the ARMTRAK robot, serial hardware is tvo slow.
Two types of parallel hardware are available to speed the processing of visual
processing. Simple, frequently repeated algorithms can be implemented on
the Datacube processor. Because the Datacube is a special purpose machine,
however, only a few techniques can be implemented this way. The Datacube
cannot be reconfigured while a task is running. The Butterfly multiprocessor,
on the other hand, is a general purpose multiprocessor. It can be reconfigured
as the task demands. Because it is a general purpose machine, however, it is
not as fast as the Datacube for vision processing.

To be able to deal with the example problem, the system must be able
to take care of both types of parallelism. The visual primitive from which
the system constructs its visual representation of the box car, should be im-
plemented as MaxVideo routines. The unprocessed image contains too little
information that is constant over different views. In addition, the processed
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information arriving from the MaxVideo should be combined using the But-
terfly. The Butterfly allows several processors to coordinate their activities
on a single image.

Time itself must enter into the description of processes and the value
of computations to the system. The sensor control system must be oppor-
tunistic to take advantage of unexpected information. In addition, it must
be realistic to abandon the search for information as time constraints take
over. Thus the management of sensors parallels the management of resources
elsewhere in the planning system of which it is a part, and itself must be mir-
rored in the operating system that provides the foundation for the integrated
system. Just such a system is being built at Rochester: the Psyche operating
system [32] provides the necessary functional and programming environment
support. one active vision program, Juggler, has already been ported to
Psyche.

5.3 Sensing and Control under Sub-optimal Circum-
stances

The temporal constraints require that the system deal with information that
is sub-optimal in some aspects. If it chooses to glance at Spur #3, the box
car will be sufficiently small that some detail will be lost. Those routines
which rely on this detail will not give good information. The system must
be able to make the most of the information it is able to gather in the time
it has.

Moreover, the system’s performance should degrade gracefully in the pres-
ence of occlusions and clutter. If there is only one car on Spur #3, the system
should be relatively certain that it knows what a box car is. If, on the other
hand, there are many railroad cars on Spur #3, it should still be able to
guess that it is one of those that it cannot identify.

The robot’s control routines should also be able to deal with sub-optimal
situation. It may be impractical in some circumstances to keep the robot
calibrated. The system should be continue to function in these circumstances.

5.4 Choosing Appropriate Tasks

The problem of choosing appropriate tasks occurs twice: during design and at
runtime. During design a flexible, computationally tractable set of primitives
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must be chosen from which more comple. behaviors can be constructed. At
runtime, the robot’s control mechanisms must construct the behaviors from
the primitives provided.

ARMTRAK motivates several visual capabilities closely related to the
ones we have studied. For instance, recognizing a moving railway car will
involve tracking it (stabilizing its image). Another useful gaze-control prim-
itive is redirecting the gaze toward a known point, possibly adjusting the
head position to get a clear view. Dynamic models of the train and robot
will allow trajectories to be calculated that achieve synchronous relationships
between moving trains and the head. The timely achievement of visual tasks
raises issues that parallel those of "real-time” planning. A repetoir of such
behaviors must be developed that may be used to complete whatever activity
a plan calls for.

In addition to this repetoir of activities, the system must be able to
compose more complex behaviors from them. It must be able to decide the
most useful place to look next given its task and its abilities. In the example,
the robot must decide where Spur #3 is and how be to gather the necessary
information to distinguish box cars.

5.5 Current Research

Part of the ongoing research effort in the robotics and vision laboratory
is to endow the Rochester Robot with an increasinelv sonhisticated visual
repertoire, especially capabilities needed to support tasks in visually dynamic
environments.

Recent work with the Rochester Robot produced several implementations
of potential basic components of a real-time gaze-control system (8, 11, 9, 30].
These components included basic capabilities of target tracking, rapid gaze
shifts, gaze stabilization against head motion, verging the cameras, binocular
stereo, optic flow and kinetic depth calculations. For instance, tracking is
accomplished with a special-purpose board that correlates the image with
an 8 x 8 template of the pattern to be tracked, and a board that converts
over-threshold correlation peaks to image (z,y) coordinates, that are then
converted to camera pan and tilt commands. To avoid false matches with
the unnormalized correlation operation, preprocessing is done to remove low
(or zero) frequency brightness variations, and the best match may not be
too far from its position in the previous frame. Vergence signals arise from
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a cepstral filter (similar to phase correlation) implemented with the integer
fast Fourier transform on a digital signal processing chip, producing a global
disparity measure that is then converted into a camera pan command. The
computation takes approximately 40ms.

Current work is addressing the cooperative interaction of visual and motor
behaviors in the robot hand-eye setup. For example the "Juggler” project is
attempting to keep a balloon in the air with a racquet, using visuel input.
The cooperation of basic "reflexes” in a gaze control system has been studied
only in simulation {13, 12], though some implementation work is proceeding.

Ultimately the robot may be considered a form of agent itself, with its
own hierarchy of controls and repertoire of skills. Qur plan is to design the in-
telligent robot agent out of component skills that interact loosely [29]. Other
skills can be built by observing the effects of combined primitive actions and
improving the collaboration, synchronization, and mutual awareness of the
primitive actions to develop a more efficient implementation of the desired
behavior.

6 Currently Implemented

Two versions of ARMTRAK have been implemented: a simulation and a set
of trains coupled to the sensorium associated with the Rochester Robot. The
simulation allows rapid prototyping of planners and experimentation with
problems posed by different layouts. Because building model train layvouts
requires an investment of effort, the availability of the simulation allows users
of the systems to perform quick experiments to answer specific questions. On
the other hand. simulations invariably involve simplifying assumptions. The
availability of the real trains and the sensorium provided by the vision lab
insures that the results obtained using the simulation are accurate. The
simulation will allow easy experimentation; the real trains will insure that
these experiments are honest.

6.1 The Simulation
The ARMTRAK simulation displays the following characteristics:

e The information describing the simulation is maintained as a relational
database allowing easy modification of the possible queries.
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e Planners link to the simulation through a series of library functions
that return values on query, or change the state of the simulation on
command.

o The communication between the simulation and the planners is main-
tained by stream based sockets allowing the use of planners on other
machines. Separating planners from the simulator also insures that
planners built using it will work with the real model trains.

The overriding concerns in the development of the simulation is that it accu-
rately models the real model trains, and that planners developed using the
simulation can easily be applied to the real trains.

In the ARMTRAK simulation, both the trains and the sensorium are
simulated. The trains are simulated by a database that is updated period-
ically by a set of real-time control routines. The sensorium is simulated by
a set of database queries. A library of access functions is provided through
which the user accesses the simulation.

Th= ARMTRAK simulation consists of five modules and a library of
functions. The modules are the input module, the database module, the
real-time control module, the communications module and the error and
debugging module. The input module takes an initial description of the
layout and produces a memory resident database that can be manipulated
by the real-time control routines. The database modules defines the database
schema and provides routines for manipulating it. The most important of
these routines are select, project and join. Using these three operations
any element in the database can be accessed. The real-time control module
updates the database periodically providing the illusion of movement for
the simulation. Communications between the user and the simulation are
performed by routines in the communications module. The communications
module reads messages sent out by the library routines and passes them
to the appropriate module for execution. The error and debugging module
contains routines that catch errors and notify the users of problems. Also
included in this module are routines useful in debugging the program as it
was developed. All these modules are tied together through the ARMTRAK
module.

The library consists of a set of routines that allow the user to alter and test
the state of the simulation. These routines are linked into the user program
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and provide a means of setting up communications. They also provide a
restricted set of command that can be sent to the simulation.

The ARMTRAK simulation runs on both Sun/3s and Sun/4s. It can
be accessed through library routines on Sun/3s, Sun/4s and Symbolicses.
Library routines for the Sun/3s and Sun/4s have been implemented in both
C and Lisp. The library routines on the Symbolics are implemented in Lisp.
Though the connection to Lisp, the ARMTRAK simulation is already being
used as a testbed for planners.

6.2 The Rochester Robot Version

The version of ARMTRAK that uses the Rochester Robot is much less com-
plete than the simulation. It has primitive versions of vision routines to
satisfy the three ARMTRAK queries, but the commands are simulated by
hand. The vision routines are able to recognize the existence of a moving
train in its field of view and are able to determine the state of a switch in
its field of view. It also knows the positions of the switches so it can posi-
tion itself to find them. The train controller has been wired so that the setup
(the trains, switches, and decouplers) can be operated from outside the robot
room.

This implementation requires four pieces of specialized hardware: the
layout, the head, the arm, the MaxVideo box, and Ophiuchus. The layout is
a set of HO gauge model trains connected by a cable to a controller located
outside the robot room. The head consists of two cameras mounted on a
platform that can move either camera’s yaw independently or both camera’s
pitch simultaneously. The arm is a Puma 760 connected to a Val controller
implemented on top of an LSI-11. The MaxVideo box consists of a set of
image processing cards connected to a host computer by a VME bus. The
cards necessary for ARMTRAK are a Digimax, a RoiStore 2048, a MaxMux,
and two FeatureMaxes. Finally, Ophiuchus is a Sun 3/280 connected via
VME bus to the MaxVideo cards and the controllers for the eye motors, and
via serial line to the Val arm controller. Figure 7 shows the hardware setup
for this version of ARMTRAK.

This version of ARMTRAK comprise six modules: the error module, err;
the main module, ar; the communications module, com; the MaxVideo mod-
ule, mv; the head control module, hd; robot control module, pu; and the
connected component module, blobs. The error module writes ARMTRAK
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error messages. The main module uses the other modules to implement the
ARMTRAK functionality. The communications module provides communi-
cation over the ethernet to Ophiuchus so the predicates can be used on other
machines. The MaxVideo module sets up and controls the MaxVideo cards.
The head control module sets up and controls the eye motors and maintains
a data structure describing the current configuration of the eyes. The robot
control module initialized the Val controller and controls the robot through
the serial line interface. The connected component module analyzes feature
lists generated by FeatureMax for blobs.
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